Stimulation of Gas Flows Using Nitrogen Injection

— ACARP C24019

Contents

- Brief Background
- Field Trials and Results
- Laboratory Studies
- Numerical Simulations
- Summary

1. Project objectives

➤ ACARP Project C21019

➤ conduct field trials of nitrogen (N₂) flushing using UIS directional boreholes to demonstrate the effectiveness of such technology for enhanced gas recovery in hard-to-drain and low permeability seams.

Field Trials - Site selection

Field Trials - Site selection

Metropolitan Colliery

Field Trials - Site selection

Field Trials - Borehole design

Borehole configuration:

- Two boreholes with spacing of 10m
- Borehole Length: 36m
- Borehole orientation and angle: vertical to rib
- Standpipe length: 18m
- Drilling method: Rotary or directional

- Two boreholes were drilled at 11c/t, 300 Mains
- Gas contents measured.

- Two boreholes were drilled at 11c/t, 300 Mains
- Gas contents measured.

Field Trials - Nitrogen source

initially we plan to use the TANKS.....

- a) Liquid nitrogen tank handling and transport induction was presented for UOW researchers and Metrop mine workers at the mine site on 06/07/2016;
- b) 3 tanks of liquid nitrogen were delivered to the mine and a trial of transport was conducted on <u>27/07/2016</u>;
- c) Due to the concerns of safety issue from the mine workers, the selection of nitrogen sources was re-discussed and nitrogen gas bottle packs were decided to use to instead of liquid nitrogen tank on 07/09/2016;

Field Trials - Nitrogen source

Nitrogen Bottle from CoreGas:

- a) 8 Packs of 12-bottle nitrogen were delivered
- b) Corresponding accessories were prepared and inspected by the mine mechanical engineers.

Size	6 pack	12 pack
Pressure, MPa	30	30
Contents, m ³	80	161
Weight (full), kg	607.92	1,180
Weight (empty), kg	515.0	995
Dimensions(Height), mm	1985	1985
Dimensions(Diam/Width), mm	709 X 510	1020 X 800

Field Trials - Nitrogen injection pipes

Injection accessory was designed to conduct the nitrogen injection and match the standpipe on site at Metro

Field Trials - Nitrogen injection borehole sealing

An inflation packer was used to provide a better seal of the production hole before nitrogen flushing

3. Summary of completed works

- ✓ Laboratory nitrogen flushing tests: Laboratory nitrogen flushing tests on cores were conducted to prove the effectiveness of such technology and to help optimize the design of field trial. Work included studied:
 - Different permeability scenarios
 - Nitrogen injection pressure
 - The replacement ratio of nitrogen to CO₂
 - > The best involving time of nitrogen injection

Setup of core flushing test apparatus with back pressure regulator and combined flow meter

Setup of syringe-GC gas composition analysis apparatus

Field Trials - before flushing

- a) No gas flow was observed from production borehole, indicating the gas around production hole had been leaked through fractures during the period of shut-in, or the borehole was blocked;
- b) Gas flow was observed from injection hole, the flow rate was recorded and gas samples were collected.

Gas composition of nature gas flow (AF=airfree) from injection borehole:

	•		
Sample/date	N2(AF) %	CO ₂ (AF) %	CH₄(AF) %
01-25/10	0	99.8088804	0.191119552
02-25/10	0	99.8129021	0.187097904
03-25/10	0	99.8149599	0.185040056
01-26/10	0	99.8040786	0.195921372

Field Trials - Nitrogen flushing

- ➤ Four stages of nitrogen injection were carried out from 27 Oct to 21 Nov:
- ❖ 27 Oct: stage one, 2 packs (around 300m³) of nitrogen were injected, gas samples from production borehole were collected during and after injection;
- 07 Nov: stage two, one and half packs (around 225m³) of nitrogen were injected, gas samples from production borehole were collected during and after injection;
- ❖ 15 Nov: stage three, water inflation packer was used to seal the borehole, five and half packs (around 825m³) of nitrogen were injected, gas flow from production borehole was measured and gas samples were collected during and after injection;
- ❖ 21 Nov: stage four, water inflation packer was used to seal the borehole, 1 pack (around 150 m³) of nitrogen was injected, gas flow from production borehole was measured and gas samples were collected during and after injection.

1st Flushing:

- The production borehole has 0 flow before injection
- Gas flow was observed at 400KPa of injection, indicating <u>UIS nitrogen</u> injection can stimuate and activate gas desorption and subsequent gas flow;
- 35%~60% CO₂ concentration was found in the produced gas.
- Under the current reservoir conditions and injection pressure (400KPa), the injected nitrogen can breakthrough in 45 mins.

2nd Flushing:

Injection pressure at 100KPa, 250KPa and 350KPa were used, the injection rate and response of production borehole were recorded.

Note	Time (real) Time (min)	Production	Pack regulator	Borehole	Flowmeter	Flowmeter	Injection flow	Pack	Injection flow (back-calculated	
			flow	pressure	pressure	pressure	reading	(corrected)	pressure	from pack
Start	8:00	0	-						29	
	8:25	25	-	3	1.1	2.575	190	311.46	28	213.3333333
	8:45	45	-	2.5	1.3	2.6	170	280.02	27	266.6666667
	9:05	65	-	2	1.2	2.4	130	205.73	25	533.3333333
	9:25	85	-	2	1.2	2.4	120	189.91	23.5	400
	9:45	105	-	1.5	1.2	2.275	120	184.9	22.7	213.3333333
	10:05	125	-	1.5	1.2	2.275	110	169.49	21.5	320
	10:30	150	-	1.5	1.2	2.275	110	169.49	21	106.6666667
	11:00	180	0.6	10	2.7	5.525	-	-	16	1066.666667
	11:07	187	1	10	2.47	5.3525	370	874.47	14.5	1142.857143
	11:20	200	1.5	10	2.8	5.6	360	870.29	12.5	820.5128205
	11:40	220	out of range	9.5	2.81	5.4825	350	837.19	9.5	800
	12:00	240	out of range	9.5	2.8	5.475	330	788.81	6.5	800
	12:20	260	out of range	8	2.8	5.1	300	692.1	3.5	800
Stop to set up Q1 Kit										
Restart	13:20	0							32	
	13:30	10	1	10	2.4	5.3	-	-	29.5	1333.333333
Try to use Q1 kit	13:45	25	1.2	10	2.8	5.6	360	894.46?	26	1244.444444
take off flow meter	14:05	45	No response	12	3	6.25	-	-	22	1066.666667
	14:10	50	No response	12	3.2	6.4	-	-	21	1066.666667
	14:25	65	No response	12.5	3.35	6.6375	-	-	18	1066.666667

- No gas was produced with 100KPa injection, indicating the effect of nitrogen injection may require a 'kickoff' pressure. Nitrogen injection rate drops quickly in each injection cycle
- Gas production at 250KPa injection exceeded the upper limit of small flow meter (1.5LPM), indicating the production rate increases quickly with continued injecting.
- At 350KPa injection, the 5L gas sample bag can be fully filled in around 20s, illustrating the produced gas flow was approximately 15LPM
- CO₂ percentage drops with continuing injection. that free CO₂ in fractures can be flushed out efficiently, CO₂ desorption rate dictates overall flushing effect.
- Higher injection pressure may not always be a better option.

3rd Flushing: Water inflation packer was used to seal the borehole at 24m location (leaving 12m open borehole).

- _____2 means pack number 2 was used * OOR means out of range
- * GS1 means gas sample 1, the following time (Min; Sec) indicates the period of filling full sample bag (4.5L)

Time Action Reading Injection	
pressure pressure (KPa) (MPa) (injection) borehole (LPM) (KPa)	duction v (LPM)
Installation of water injection packer, the packer (1.5m) was 08:00 pushed to 24m No position from the drilling collar, left 12.5m open borehole	o1.ne
09:10 Start injection 214 - M	lone
	lone
	lone
	lone
Sten 1	lone
1Kna injection	
	lone
	lone
10:40 200 210 110 120 M	lone
11:00 Increase injection 1000 - OOR 200 N	lone
11:10 1000 ②8 360 220 M	lone
11:15 800 - 320 230 M	lone
1000 -	lone
700 (nack -	0.2
11:40 600(pack pressure low) 22 230 210	
1000 (new pack change @31 OOR 220 over)	0.3
12:00 1000 327.5 OOR 280	1.0
12:20 Step 2 800 (reduced) 324 330 260 1.5	(GS1)
	OOR
	OOR
13:25 800 ②14 320 280 U	(sample method ised) 1:15 1:18
13:45 800 @11 310 280 1	GS3 1:15 1:05
14:00 800 39.5 310 280 1	GS4 1:10 1:05
14:12 Increase pressure 1300 ②8.2 get rid of flow meter	-
14:28 1100 (pack ③3.8 - 300	GS5

Event logs of third step of UIS nitrogen injection

	14:43	pressure low)				1:00
						0:55
14:43		700	31.8	-	260	
		1600 (change	4 30.5			
14:46		over new	(<u>4</u>)30.5	-	300	
		pack)				GS6
15:00		1700	4 24	_	380	1:00
15.00	Step 3	1700	<u>4</u>)24		360	0:55
	400KPa injection					GS7
15:20		1800	4 19	_	400	0:50
23.20		1000				0:53
15:47		1600	4 11	-	400	0.55
						GS8
16:12		1000 (pack	4 7	_	350	0:25
		pressure low)	-			0:27
		700/				GS9
16:31		700(pack	4 5	_	300	0:27
		pressure low)				0:27
		1800(change				
16:36	Increase pressure	over new	⑤ 31	-		
		pack)				
						GS10
17:01		1800	\$21		430	0:25
17.01				-		0:20
						0:26
			@	-	440	GS11
17:23		1800	⑤ 15.5			0:20
						0:20
17:45		1400(pack	⑤10	-	390	GS12
		pressure low) 1000(pack				0:22 & 0:22 GS13
18:05		pressure low)	⑤ 7	-	340	0:23 & 0:23
		2000(change				0.23 & 0.23
18:13		over new	®30.5		_	_
10.13		pack)	@30.3	_	_	_
	Maximum flow	packy				30 (biggest
18:33	injection	2000	®20.5	_	440	flow meter
10.55		2000	220.3			used)
18:46		2000	®16.5	-	460	33
19:00		2000	®13	-	460	GS15 35
35.55	+			1		
	1	change over			l	l
		change over new pack				
19:06		new pack	-	-	-	-
19:06			-	-	-	-
19:06		new pack found leakage	-	-	-	-
19:06		new pack found leakage of pack 🕏	- ®31	-	-	-
		new pack found leakage of pack 7 1600 (change	- ®31	-	-	-
		new pack found leakage of pack ⑦ 1600 (change over new	@31 @26	-	- 430	- - GS16 31
19:11		new pack found leakage of pack 7 1600 (change over new pack)		-		- GS16 31 33

Change of CO₂ percentage during nitrogen injection

Injection pressure & production rate

- Production gas flow was measured by flow meters and gas sample bags;
- No gas production was observed with 100KPA injection, which confirms the 'kickoff' pressure assumption;
- The higher the injection pressure was, the greater the production flow was.

Production rate & CO₂ composition

- CO₂ percentage continued to drop during the entire injection process (from 55% to 25%), the desorption rate again became the constraint of flushing effect;
- CO₂ production became stable at the late injection stage, even the production rate increased sharply.

Injection pressure & pure CO₂ production rate

AUSTRALIA

- i) Although the CO₂ percentage of the produced gas kept dropping, the pure CO₂ flow was almost stable at each injection pressure step;
- j) The higher the injection pressure was, the greater the pure CO₂ production flow was;

Subsequent flow rate & composition after stopping injection

- k) After stopping injection, production flow continued to flow for 5 days and apparent flow was still observed before injection stage four. Comparing to the injection time (10 hours), strong post flushing effect was observed!
- I) The production rate dropped by 2/3 in these 5 days, however the CO₂ percentage of the production gas recovered to 90%.

4th Flushing: Pulse injection.

- ______ means pack number 2 was used
- * OOR means out of range
- * GS1 means gas sample 1

0011	neans gas sample 1				
Time	Action	Nitrogen pack outlet pressure (KPa)	Nitrogen pack pressure (MPa)	Gauge pressure on Injection borehole (KPa)	Production flow (LPM)
10:13	Arrive site, get the first sample before injection	-	-	-	GS1 3min 2.7L
10:15	Start injection	1000	<u></u> \$6.7	-	
10:25		800	\$6	160	GS2 3min 3.24L
10:40		600	⑤4.5	160	GS3 3min 4.1L
10:50		400	⑤3.5	150	
10:52	Pack change over	1500	©12	-	
11:03	Stop injection for pulse test		⑥ 9.5	320	GS4 1min 5L
11:26	Resume injection	1300	© 6	100	GS5 1min 4.1L
11:45		1000	© 6	260	GS6 1min 5L
11:50	Stop injection for pulse test	-	© 5.5	260	
12:10		-	© 5.5	100	GS7 1min 4.2L
12:30		-	© 4	200	GS8 1min 4.8L
12:35	Change over to pack 8	1500	®15.5	-	
12:50		1500	®10.5	340	GS9 30s 4.6L
13:11		1000	® 7	300	GS10 30s 5L
13:25	Stop injection	700	® 5	270	GS10 20s 4L

Event logs of fourth step of UIS nitrogen injection

- A relatively high and stable CO₂ percentage & flow can be obtained by using pulse injection;
- Pulse injection provides extra desorption time for the coal seam, also effective use of nitrogen and improves overall flushing efficiency.

Field Trials - Summary

- Nitrogen flushing can accelerate the gas flow between the injection and production boreholes;
- Production flow is in proportion to the injection pressure. A 'kickoff' pressure may be required to active the flushing effect (100~250KPa in this case);
- Borehole quality may have great impacts on the flushing result;
- The produced gas contains a large percentage of CO₂, indicating the coal seam gas can be successfully flushed out;
- CO₂ percentage in the produced gas drops with continuing injection, showing desorption rate may become a constraint of flushing effect when gas content is low;
- The pulse injection method could enhance the flushing efficiency, the best injection mode (pressure & pulse interval) requires further studies.

Other studies

Lab testing and reservoir simulations

N₂ flushing CO₂ test

$$\left[\phi_m \frac{M_1}{RT} + \rho_c \rho_{gs1} \frac{V_{L1}b_1(1+b_2P_{m2})}{(1+b_1P_{m1}+b_2P_{m2})^2} \right] \frac{\partial P_{m1}}{\partial t} - \rho_c \rho_{gs1} \frac{V_{L1}b_1b_2P_{m1}}{(1+b_1P_{m1}+b_2P_{m2})^2} \frac{\partial P_{m2}}{\partial t}$$

$$= -D_{1} \frac{3\pi^{2} \frac{M_{1}}{RT} (P_{m1} - P_{f1})}{V_{12} b_{2} (1 + b_{1} P_{m1})} \left[\phi_{m} \frac{M_{2}}{RT} + \rho_{c} \rho_{gs2} \frac{V_{12} b_{2} (1 + b_{1} P_{m1})}{(1 + b_{1} P_{m1} + b_{2} P_{m2})^{2}} \right] \frac{\partial P_{m2}}{\partial t} - \rho_{c} \rho_{gs2} \frac{V_{12} b_{1} b_{2} P_{m2}}{(1 + b_{1} P_{m1} + b_{2} P_{m2})^{2}} \frac{\partial P_{m1}}{\partial t}$$

$$= -D_{2} \frac{3\pi^{2} \frac{M_{2}}{RT} (P_{m2} - P_{f2})}{RT} (P_{m2} - P_{f2})$$

$$(\phi_f + P_{f1} \frac{1}{K}) \frac{\partial P_{f1}}{\partial t} + P_{f1} \frac{1}{K} \frac{\partial P_{f2}}{\partial t} + P_{f1} (\beta - 1) \frac{\varepsilon_{L1}b_1 + (\varepsilon_{L1} - \varepsilon_{L2})b_1b_2 P_{m2}}{(1 + b_1 P_{m1} + b_2 P_{m2})^2} \frac{\partial P_{m1}}{\partial t} + \\ P_{f1}(\beta - 1) \frac{\varepsilon_{L2}b_2 + (\varepsilon_{L2} - \varepsilon_{L1})b_1b_2 P_{m1}}{(1 + b_1 P_{m1} + b_2 P_{m2})^2} \frac{\partial P_{m2}}{\partial t} = -\nabla (\frac{P_{f1}k}{\mu_1} \nabla P_{f1}) + D_1 \frac{3\pi^2}{L^2} (P_{m1} - P_{f1}) \\ P_{f2} \frac{1}{K} \frac{\partial P_{f1}}{\partial t} + (\phi_f + P_{f2} \frac{1}{K}) \frac{\partial P_{f2}}{\partial t} + P_{f2}(\beta - 1) \frac{\varepsilon_{L1}b_1 + (\varepsilon_{L1} - \varepsilon_{L2})b_1b_2 P_{m2}}{(1 + b_1 P_{m1} + b_2 P_{m2})^2} \frac{\partial P_{m1}}{\partial t} + \\ P_{f2}(\beta - 1) \frac{\varepsilon_{L2}b_2 + (\varepsilon_{L2} - \varepsilon_{L1})b_1b_2 P_{m1}}{(1 + b_1 P_{m1} + b_2 P_{m2})^2} \frac{\partial P_{m2}}{\partial t} = -\nabla (\frac{P_{f2}k}{\mu_2} \nabla P_{f2}) + D_1 \frac{3\pi^2}{L^2} (P_{m2} - P_{f2})$$

$$P_{f2}(\beta - 1) \frac{\varepsilon_{L2}b_2 + (\varepsilon_{L2} - \varepsilon_{L1})b_1b_2P_{m1}}{(1 + b_1P_{m1} + b_2P_{m2})^2} \frac{\partial P_{m2}}{\partial t} = -\nabla (\frac{P_{f2}k}{\mu_2} \nabla P_{f2}) + D_1 \frac{3\pi^2}{L^2} (P_{m2} - P_{f2})$$

Thanks to

ACARP:

Peter Bergin (Project Manager)
Brad Elvy and Bharath Belle (Industry mentors)

Metropolitan Colliery

- Alaster Wylie
- David Pitt
- Peter Jadzio
- Andrew Hyslop
- Wayne Mulolland
- Green, Wayne
- Many individuals

Appin Colliery

- Russell Thomas

UOW team:

Gongda Wang, Frank Hungerford, Jia Lin, Jan Nemcik Patrick Booth, Naj Aziz

Peabody Energy

- Dennis Huo, Coal Seam Gas Specialist
- Bob Gallagher Director Studies

